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Abstract

We present a summary on ongoing simulation results for
the electron-cloud buildup in the context of the proposed
FNAL Main Injector (MI) intensity upgrade [1] in a field-
free region at the location of the RFA electron detector [2].
By combining our simulated results for the electron flux at
the vacuum chamber wall with the corresponding measure-
ments obtained with the RFA we infer that the peak sec-
ondary electron yield (SEY)δmax is ∼>1.4, and the average
electron density isne ∼> 1010 m−3 at transition energy for
the specific fill pattern and beam intensities defined below.
The sensitivity of our results to several variables remains
to be explored in order to reach more definitive results. Ef-
fects from the electron cloud on the beam are being inves-
tigated separately [3].

INTRODUCTION

An upgrade to the MI at FNAL is being considered that
would increase the bunch intensity toNb ∼ 3× 1011 in or-
der to generate intense beams for the neutrino program [1].
While such high intensities will require significant hard-
ware upgrades, the technique of slip-stacking routinely al-
lows, at present, bunch intensitiesNb ∼> 1 × 1011. Dur-
ing 2006 an RFA-type electron detector was installed in a
field-free section of the MI, which shows a clear electron
cloud signal close to transition energy at such beam inten-
sities [2].

In response to these developments, we have been ex-
amining, by means of simulations with the build-up code
POSINST [4–7], the magnitude of the electron-cloud effect
and the potential risks thereof at higher values ofNb [8–
12]. The present RFA measurements allow a first calibra-
tion of our results and therefore a prediction for the elec-
tron cloud density expected at higher intensity. This article
summarizes Ref. [11] and slightly corrects and clarifies its
conclusions.

SIMULATED CONDITIONS

The MI beam ramps from injection at a kinetic energy
K = 8 GeV to extraction atK = 120 GeV in ∼ 0.5
s, corresponding to∼ 45, 000 turns, crossing transition at
K ' 20 GeV. Ideally, we would simulate the entire ramp,
but this is wholly beyond our present-day computer capa-
bilities. We have therefore simulated only 3 values ofK,
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namelyK = 8, 20 and 30 GeV, and only for one full rev-
olution in each case (revolution periodT0 = 11.1 µs). For
each value ofK, we assume two representative values for
the RMS bunch length. We assume a bunch fill pattern
made up of 6 batches, each having a train of 82 bunches
followed by 4 empty buckets. The first batch is a double-
intensity batch, withNb = 10.3× 1010, while the bunches
in the remaining batches have a more standard intensity
Nb = 5.7 × 1010. There is a 76-bucket-long gap after the
last bunch of the 6th train for a total of 588 buckets. The
bunch spacing in time istb = 18.8 ns.

We simulate the electron cloud build-up only in the
field-free section where the RFA electron detector is in-
stalled. At this location the chamber is cylindrical of radius
R = 7.3 cm and the beta functions are(βx, βy) = (20, 30)
m. We assume a normalized 95% transverse emittance
εn,95% = 15π mm-mrad for all bunches for all cases we
investigate here. The energy spread is small enough that
the dispersion contributes negligibly to the transverse beam
size. We further assume the stainless steel SEY model de-
scribed in [5, 6], with the additional practical assumption
that the SEY at 0 energy,δ(0), is proportional toδmax. This
latter is the primary variable exercised in this set of simula-
tions: we allow it to range in1.3 ≤ δmax ≤ 1.7. However,
we keep fixedEmax, the incident electron energy at which
the SEY peaks, at 293 eV. Table 1 shows the RMS trans-
verse beam sizes and other beam parameters. Other simu-
lation details and variables such as grid size and number of
macroparticles are discussed in [11].

RESULTS

Fig. 1 represents one example of the time development of
the average electron cloud densityne during one machine
revolution assumingδmax = 1.3. In this casene grows ex-
ponentially during the first batch owing to the high value
of Nb, and then decays to a negligible level during the pas-
sage of the rest of the beam. For higher values ofδmax,
ne reaches or exceeds the beam neutralization level, as dis-
cussed below.

Figs. 2 show the one-turn-average incident electron flux
Je at the wall of the chamber vs.δmax for the 6 cases con-
sidered, as labeled. Figs. 3 showne for the same condi-
tions. Several other quantities related to the electron cloud,
such as average electron-wall impact energy and local den-
sity, are discussed in [11].

DISCUSSION

An approximate proportionality betweenJe and ne is
evident in our simulated data, not just for the one-turn av-



Table 1: Assumed beam parameters.

Beam kinetic energy K [GeV] 8 20 30
Beam relativistic factor γb 9.486 22.32 32.97
95% bunch duration Tb [ns] 8 or 6 1 or 0.75 1.8 or 1.5
RMS bunch length σz [m] 0.596 or 0.447 0.0749 or 0.0562 0.135 or 0.112
Hor. RMS bunch size σx [mm] 2.29 1.50 1.23
Vert. RMS bunch size σy [mm] 2.81 1.83 1.51
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Figure 1: Simulated electron densityne as a function of
time for one revolution forδmax = 1.3. The green vertical
lines represent the beam signal (arbitrary units).

erages in Figs. 2-3 but also for the time-dependent quanti-
ties, for all cases we have simulated. This proportionality
is a simple consequence of the assumption that all electrons
contained in the chamber at any given time will strike the
wall within a time interval= tb.1 For a round chamber, this
assumption readily yields

Je = kne , k =
eR

2tb
(1)

Our simulation conditions yieldk = 0.3 × 10−12 A–m,
which is satisfied by all our simulations for the MI at the
RFA location within a factor of 2 or better. Presumably, this
agreement becomes less good for smallertb and/or smaller
Nb.

A change in the qualitative dependence ofne (or Je) on
δmax is seen in Figs. 2-3 atδmax ' 1.4 − 1.6: the de-
pendence is exponential below this threshold, and linear
above it. This change is probably due to the transition from
a non-space-charge dominated electron cloud density to a
space-charge dominated regime.

The simulations near transition energy,K = 20 GeV,
show significantly higher values ofne and Je than at
injection energy, in qualitative agreement with observa-
tions. The mechanism for the more intense effect is a

1I am indebted to R. Zwaska for this argument.
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Figure 2: Simulated electron flux at the walls of the cham-
ber vs. δmax for the various cases simulated. Top: linear
scale; bottom: logarithmic scale (same data).

stronger kick by the beam on the electrons owing to the
shorter bunch length. This stronger kick implies an average
electron-wall collision energy that approaches or exceeds
Emax [12], implying, in turn, a higher effective SEY.

Although the overall electron-cloud density is seen to
exceed the beam neutralization level by up to∼ 30% in
Figs. 3 atδmax = 1.7, the electron-cloud density within
the 1-σ beam ellipse (not shown here) is only a few per-
cent of the local beam neutralization level,Nb/(πσxσysb),
which is in the range(0.5− 1.7)× 1015 m−3 for the cases
considered (sb is here the bunch spacing in units of length).

The electron current measured by the RFA detector [14]
is∼ 0.1− 0.3 µA near transition energy, corresponding to
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Figure 3: Simulated electron density vs.δmax for the vari-
ous cases simulated. Top: linear scale; bottom: logarithmic
scale (same data).

a flux Je ∼ 0.7 − 2 mA/m2. Comparing this value with
Figs. 2 impliesδmax∼> 1.4, andne∼> 1010 m−3, with a sig-
nificantly lower density atK = 8 GeV. This value ofδmax

is in disagreement with the value obtained from a direct
bench measurement of a MI vacuum chamber sample at
SLAC, namelyδmax ' 2 [15]. It appears, however, that the
sample in question was exposed to air before its SEY was
measured; this could explain the much larger value than
what we infer from our simulations.

Our simulations may be sensitive to other model vari-
ables, which we have not yet explored, that may change
details of our conclusions. Such variables include:

• The precise value ofδ(0).

• The detailed composition of the secondary emission
energy spectrum, particularly the fraction of redif-
fused electrons.

• The precise value ofEmax.

More detailed discussions are presented in [11].
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